/* The Berkel ey UPC Runtine Specification

* Version: 3.3

* $Revision: 1.17 $

* Copyright 2002-4, Dan Bonachea <bonachea@s. ber kel ey. edu>
*/

/* This file describes the interface between the platformindependent code
generated by a UPC-to-C translating conpiler, and the hand-witten UPC
runtinme |layer that inplenents the |anguage on a given architecture

Many/ most of the operations below will be inplenented using macros or inline functions in an actua
i npl enmentation (a nunber of design decisions in the interface were based on the expected optim zations
that will occur in such an inplenentation)

They are specified using function declaration syntax below to make the types clear

Al'l correct generated code nust type check using the definitions bel ow

In no case should client code assune it can create a "function pointer" to any of these operations

Note this interface is nmeant prinmarily as a conpilation target for a code generator
not a library for hand-witten code - as such, the goals of expressiveness and performance
general |y take precedence over readability and minimality

I npl ement ati on-specific values in declarations are indicated using "???"
Sections marked "I nplementor’s note" are recomendations to inplenmentors and are
not part of the specification
*/

/*

Open issues in the spec
*/

#i ncl ude <inttypes. h>

/* __ */
/* UPC Runtinme Types

For nmore information on a particular type, see the relevant section of the
speci fication bel ow.

upcr _thread_t /1 UPC t hread nunber

upcr _shared_ptr_t /1 shared pointer

upcr _pshared_ptr_t /'l phasel ess shared pointer (indefinitely blocked or bl ocksize=1)
upcr _phase_t /'l phase of shared pointer

upcr _regi ster_val ue_t /'l largest unsigned integer type that will fit in a CPU register

upcr _handl e_t /1 handl e for nonbl ocki ng operations

upcr _val get _handl e_t /1 handl e for nonbl ocki ng val ue get operations

upcr _startup_shal l oc_t /1 Information struct for statically allocated shared data
upcr_startup_pshal | oc_t /1 Information struct for statically allocated, phasel ess shared data

upcr_startup_arrayinit_dimnfo_t // Initialization info for each dinension of a statically
/1 allocated shared array
*/

/* __ */
/* Control Interface

*/
/***

* Runtine initialization functions

There are two sets of initialization functions for the Berkel ey UPC
runtine: one lowlevel set targeted at conpil er devel opers, who want the
| argest amount of control over behavior, and one 'sinpler’ interface
targeted at application/library devel opers who wi sh to use UPC within a
| arger, non-UPC C/ C++ program (though it can also be used by UPC
conpilers). The sinpler interface (bupc_init() andi bupc_init_reentrant())
uses the lower-level API, plus a set of 'magic’ global variables provided
by the UPC linker, to provide the full set of information needed, while the
| ow | evel APl takes all needed information in the function paraneters

/

*%k ok ok ok Ok Ok kX X F

B R R XX

Low- | evel API

If used, the lowlevel initialization functions nust be called in the
foll owi ng order

upcr_startup_init()
upcr _startup_attach()

*ok ok ok ok Ok ok

*
-~

ok ok ok ok ok ok Ok R R %k R R ok 3k 3k ok ok ok ok ok ok ok ok %k R % ok 3k 3k ok ok ok ok ok Ok Ok k% k% % % %k ok ok %k ok

~

upcr _startup_spawn()
upcr_exit() /'l not always needed: see description

Bootstraps a UPC job and perforns any systemspecific setup required.

Called by all applications that use the UPC runtinme at startup to bootstrap
the job before any other processing takes place. Mist be called before

any calls to any other functions in this specification, with the
command- | i ne paraneters passed to main (argc/argv), which may be nodified
or augnented by this call (and are thus not safe to use before this call).
The semantics of any code executing before the call to
‘upcr_startup_init()' is inplenentation-specific (for exanple, it is
undefined whether ‘stdin/stdout/stderr’ are functional, or even how many
nodes will run that code).

If the application using the runtine requires that it be run with a

fixed nunber of UPC threads, pass the thread count in the
"static_threadcnt’ paraneter, and the programw |l abort with a error
message if the provided val ue does not match the execution environment that
will be provided. Pass <= 0 for applications that can run with a dynamc
nunber of UPC threads. |If pthreads are used, a positive integer must be
supplied for 'default_pthreads_per_proc’; otherw se, pass O.

The ' mai n_nane’ paraneter should be passed the name of the user’s nmin()
UPC function: it is used to help users find that synmbol name when debuggi ng.
You may pass NULL if this is not needed.

Upon return from ‘upcr_startup_init()’', all the nodes of the job will be
runni ng, stdout/stderr will be functional, and the basic job environnent
will be established, however the primary network resources nmay not yet have
been initialized. The following runtine functions are the only ones that
may be call ed between ‘upcr_startup_init()’' and ‘upcr_startup_attach()’:

‘upcr _nynode()’

‘upcr_nodes()’

‘ gasnet _get MaxLocal Segrment Si ze()’
‘ gasnet _get MaxQ obal Segnent Si ze()’
‘upcr_getenv()’

‘upcr_gl obal _exit()’

Al other runtime calls are prohibited until after a successful
‘upcr_startup_attach()’.

‘upcr_startup_init()' may fail with a fatal error and
i mpl enent ati on-defined nessage if the nodes of the job cannot be
successful |y boot strapped.

This function may be called repeatedly, but only the first invocation wll
have any effect.

voi d upcr_startup_init(int *pargc, char ***pargv,

upcr _thread_t static_threadcnt,
upcr _thread_t defaul t_pthreads_per_proc,
const char * main_nane);

#def i ne UPCR_ATTACH_ENV_OVERRI DE 1

#def i ne UPCR_ATTACH_REQUI RE_SI ZE 2

#def i ne UPCR_ATTACH_SI ZE_WARN 4

/*

* Initializes the UPC runtine’s network system including shared nmenory

* regions. This function nust be called after upcr_startup_init(), but

* before any of the other upcr_startup_ functions.

*

* The 'default_shared_size' paraneter gives the default size to request for
* each UPC thread’ s shared menory region.

*

* The ' default_shared_offset’ paraneter specifies the nmininmmdistance (in

* bytes) to provide between the current end of the regular C heap (commonly
* provided by sbrk(0)) and the beginning of the shared nenory region. On

* some platfornms this offset becomes the growth Iimt for the regular C heap
* (and thus determ nes how much nore menmory mal |l oc(), calloc(), etc. can

* return before failing). On nost systems, it is irrelevant, and 0 should be
* passed, since using a large offset may linmt the size of the shared nmenory
* region.

*

* Values for 'default_shared_size' and 'default_shared_offset’ nust be

* nultiples of UPCR_PAGESI ZE. Both paraneters nay each be overridden at run
*

time if the 'flags’ paraneter allows it (see below).

o . T R R R R T R R N

The size and address of the shared region that is created for each node in
the application can be deternined after this call with the

gasnet _get Segnent I nfo() function. The size of the shared segnent is
guaranteed to be be no larger than the requested size tinmes the nunber of
pthreads on the node (with pthreads==1 if pthreads are not being used).
The region can be smaller than the requested amount, unless
UPCR_ATTACH REQUI RE_SI ZE is passed in the 'flags' paraneter or the
UPC_REQUI RE_SHARED S| ZE environnent variable is set to a nonenpty val ue.

The ' flags’ paraneter can contain one or nore of the follow ng values (OR
themtogether if nultiple flags are used):

UPCR_ATTACH_ENV_OVERRI DE
- if passed, the function checks the process’ environment for
UPC_SHARED HEAP_SI ZE and/ or UPC_SHARED HEAP_OFFSET. |f these are
set to valid values (a nunber imediately followed by a ' M8 or
@B, for exanple '32MB' for 32 negabytes, or '4GB for 4
gi gabytes), they override the default_shared_size and
def aul t _shared_of fset val ues, respectively.

UPCR_ATTACH_REQUI RE_SI ZE
- if this flag is passed, the function will die with an error message
printed to stderr if the allocated shared region on any node is
smal |l er than the ampunt that was asked for tinmes the nunber of
pthreads. Can be overridden at startup by setting the
UPC_REQUI RE_SHARED S| ZE environnent variable to 'yes’ or 'no’ .

UPCR_ATTACH_SI ZE_WARN
- if this flag is passed, the runtime will issue a warning to stderr
if a smaller shared nmenory segnent than requested will be used.
Can be overridden at startup by setting the UPC_SI ZE WARN
environment variable to 'yes’ or 'no’.

If any errors are encountered during upcr_startup_attach, an error message
is printed and the job is aborted.
/

voi d upcr_startup_attach(uintptr_t default_shared_size,

/*
*

*

st

~

%k ok ok ok ok ok Ok R R %k kR 3k ok ok ok ok Ok Ok Ok X kX k%

uintptr_t default_shared_of fset,
int flags);

Struct argument to upcr_startup_spawn.

/

ruct upcr_startup_spawnfuncs {
void (*pre_spawn_init)();
void (*per_pthread_init)();
void (*cache_init)(void *start, uintptr_t |en);
void (*heap_init)(void * start, uintptr_t len);
void (*static_init)(void *start, uintptr_t len);
int (*main_function)(int argc, char **argv);

Conpl etes runtime initialization, including |aunching of any additional
pthreads (if a pthreaded runtine is used), and running of the user’s nain()
function (if any).

"*pargc’ and '*pargv’ will be passed to the 'main_function' in the
"spawnfuncs’ argunent (if it is non-NULL). The ’'static_data_size’
paraneter shoul d have a nonzero value if and only if static shared data get
their own section of the shared nenory segnment, separate fromthe shared
heaps (in Berkeley upc static data are allocated off of the heap; GCCUPC
uses a separate segnent), and this should be the size of the static data
for each UPC thread. The 'default_cache_size' indicates how nmuch shared
menory to reserve for caching (by default): since caching is not yet

i npl ement ed, pass 0.

The ' spawnfuncs’ paranmeter is a struct containing pointers to six
functions.

The ' pre_spawn_init’ function, if not NULL, is called first, before any
pthreads are |aunched. |t can contain any arbitrary initializations that
shoul d happen only once per-process.

Each of the remaining function pointers is called once on each UPC thread.
The ’per_pthread_init’ function, if not NULL, is called by each pthread,

and can contain arbitrary initializations that need to happen on a
per - pt hread basi s.

The ’cache_init’ function is called next, but only if caching is being
used (i.e. if UPCR USING CACHING is defined). It nmay be set to NULL
otherwise. It nust initialize the cache within the given region

The ' heap_init’ function is called next, and nust initialize the runtinmne
shared heaps. It is passed paraneters indicating the starting address and
length of the region to use for the heap

The ’static_init’ function is then called. It nust set up all static data

for the UPC thread, and is passed the address and | ength of the segnent to be
used. The length passed is guaranteed to be at |east as large as provided in the
"static_data_size' paraneter, and the locations in the region are guaranteed to
have | ower virtual addresses than the |ocal addresses for any shared data

with affinity to this thread all ocated using the dynam ¢ shared nmenory

al | ocati on functions

Next, a barrier is perforned. Finally, if the 'main_function paranmeter is
NULL, the function returns (and upcr_exit() should be used for any program
exit path, including the end of "main’). Oherwi se "main_function’ is
called with the command |ine argunments passed in 'argv’ and 'argc’ (with a
new copy made for each pthread if pthreads are used). Again, upcr_exit()
shoul d be used for any exit paths, except that returns from ' main_function
are handl ed automatically, with the return value used as the progranm s exit
code

I'f "main_function” !'= NULL, this function never returns

If any errors occur during this function, an error nessage is printed to
stderr and the job is termni nated

o . T T R R T

/

voi d upcr_startup_spawn(int *pargc, char ***pargv,

uintptr_t static_data_size,

uintptr_t default_cache_size

struct upcr_startup_spawnfuncs *spawnfuncs);

/* Runtine shutdown/exit function

*

* This function should be called as the |ast programstatenment for all exit
* paths froma UPC application, with the single exception that the

* "main_function' used by upcr_startup_spawn() nmay sinply return an integer
* in which case the behavior is the same as if a call to this function had
* been made with that val ue

*

*

*

*

The behavi or of any code called after this function is undefined (i.e. it
may not execute).
/
voi d upcr_exit(int exitcode);

/***

* Framework for external bootstrapping of the UPC runtine

The ' bupc_init() and 'bupc_init_reentrant()’ functions allow ’external
boot strapping of the UPC runtine, i.e., initialization of the runtinme by
progranms which are not witten entirely in UPC, and whose nmain() does not
appear in a UPC file

To provide the full anpunt of needed data to the runtine, these functions
require a set of 'magic’ global variables to be set by the Berkeley UPC
I'i nker (upcc).

LA R EEREEEEEEEEEEEEEREEEEEEEEE SRR EEREE SRR EEEREEEEEEEEEEEEEEEEY]

* %k sk ok ok ok ok Ok O

Public, user-accessible function for bootstrapping the Berkeley UPC runtine
froma non-UPC C or C++ programthat does not use pthreads

A call to this function should be the first statement in main(). The
semanti cs of any code appearing before it is inplenentation-defined (for
exanple, it is undefined how many threads of control will run that code, or
whet her stdin/stdout/stderr are functional). The presence of environnment
variables is also not guaranteed, but after this call returns bupc_getenv()
can be used to retrieve them (regular getenv() is not guaranteed to provide

them .

The addresses of the conmand-Iline paraneters nmust be passed, and it is not
safe to otherwise refer to themuntil after this function returns, as it
may suppl enent or nodify them

Once bupc_init() has returned, the application may safely call into UPC
routines. Al exit paths fromthe program should call bupc_exit() as

ok ok ok ok Ok ok Ok Ok k% k% 3k ok ok ok ok

their |ast program statenent.

If any errors are encountered during this function’s execution, an error
message is printed to stderr and the job will be aborted

This call may register UNI X signal handlers. Cient code should not
regi ster signal handlers or rely on the correct propagation of signals

This function cannot be used with a pthreaded application. Use
bupc_init_reentrant() instead

This function may be called repeatedly, but only the first invocation wll
have any effect.

If used within a hybrid MPI/UPC program this function also ensures that
MPl Init() is called, if needed. Ml _Init() should NOT be called by user
code if this function is used

/

voi d bupc_init(int *argc, char ***argv);

%k ok ok ok ok Ok R %k %k %k ok ok ok ok

/
A portabl e version of bupc_init(). Acall to the bupc_init_reentrant()
function will initialize the Berkeley UPC runtine, regardl ess of whether
pt hreads are used or not.

In addition to the addresses of the regular nain() comand-Iine
paraneters, this function takes a function pointer. Calling
bupc_init_reentrant() will cause all the pthreads known to the UPC runtinme
to be | aunched, and each of themw |l then call the 'pmain_func()’ with
their own copy of the command-line paraneters. 'pnain_func’ may not be
NULL.

Li ke with bupc_init(), bupc_exit() should be called at the end of al
programexit paths, except for returns from’'pmin_func'. |If

"prmai n_func’ returns, its return value is used to indicate the exit code

of the program and the UPC runtinme will exit correctly without an explicit
call to bupc_exit() being required

No meani ngful code should follow this function call, as it exits before
returning

Wthin pmain_func(), user code may call into UPC routines. It is only safe
to access UPC routines fromthe original pthread(s) whose pnain_func() is
called, however. |f additional pthreads are |aunched by the user

application, they must not call UPC routines, or behavior is undefined

Wthin pmain_func, bupc_getenv() can be used to retrieve val ues of
environment variables (regular getenv() is not guranteed to provide them.

If any errors are encountered during this function's execution, an error
message is printed to stderr and the job will be aborted

This call may register UNI X signal handlers. dient code should not
regi ster signal handlers or rely on the correct propagation of signals

This function may be called repeatedly, but only the first invocation wll
have any effect.

If used within a hybrid MPI/UPC program this function also ensures that
MPl Init() is called, if needed. Ml _Init() should NOT be called by user
code if this function is used

This function can al so be used by UPC conpilers to bootstrap a UPC job, if
the user’s "main’ function is renaned and passed in as the 'pnain_func
par amet er .

R T T T T T T R R R R R T T N

~

voi d bupc_init_reentrant(int *argc, char ***argv,
int (*pmain_func)(int, char **));

/* Retrieve value of an environnent variable. This function should be used
instead of getenv(), which is not guaranteed to return correct

results. It can only be called by threads | aunched by the UPC runtinme
(i.e., not pthreads that have been | aunched by the user’s own
pthread_create() calls), and cannot be called until either bupc_init() or

*

*

*

*

*

* bupc_init_reentrant() has been called first.

*

* At present this function is only guaranteed to retrieve val ues
* for environment variables with nanes beginning with 'UPC_' or
* * GASNET .

*
*

The 'setenv()’ and 'unsetenv’ functions are not guaranteed to work in a

* Berkel ey UPC runtime environnment, and should be avoi ded
*/
char * bupc_getenv(const char *env_nane);

/
Runti me shutdown/exit routine

This function should be called as the | ast program statement by any program
that uses bupc_init() to bootstrap the UPC runtime. It does not need to be
used when bupc_init_reentrant() is used. The 'exitcode' provided will be
returned to the consol e that invoked the job, assuming all of the threads
terminate with this function, and use the same exitcode. |If different
threads of the programexit with different val ues, one of the values wll

be chosen arbitrarily. The behavior of any program statenents after a cal
to bupc_exit() is undefined.

If used within a hybrid MPI/UPC program bupc_exit() ensures that
MPI _Finalize() is called, if needed. MPI_Finalize should NOT be called
by user code if this function is used

L R R T T

~

voi d bupc_exit(int exitcode);

"Magi c" variables that nust appear in the |inked executable to support use
of the bupc_init() and/or bupc_init_reentrant() functions

Definitions of all variables with the "UPCRL_' prefix nmust be provided by
client code. NULL/zero values can be used if system does not support
creating executables that call UPC functions fromw thin a non-UPC C or Ct++
progr am

/

E N R I

/* Set to 0 if dynamic threads used, else to the static UPC thread count */

extern upcr_thread_t UPCRL_static_t hread_count

/* Default size of shared nenory segment and of fset */
extern uintptr_t UPCRL_def aul t _shared_si ze
extern uintptr_t UPCRL_def aul t _shar ed_of f set ;

-~
* %k ok ok ok ok ok ok ok ok Ok % k% R %k 3k 3k ok ok ok Ok Ok Ok F F

-~

Support for systens which store shared variables in a separate |inker
section.

Sorme systens (ex: GCC UPC) convert 'shared’ static data into a separate
linker section. In this case, the values stored in shared pointers are
within that linker section (since they are assigned by the linker).

To work with Berkeley UPC, the |inker section nust be mapped into a portion
of the shared region provided by gasnet. Also, if pthreads are used, a
separate copy of the linker section nust exist for each pthread

These requirements are handled by the runtime so |ong as
UPCR_USI NG_LI NKADDRS i s defined, and the begi nni ng/ endi ng addresses of the
linker section are provided in 'UPCRL_shared_begin’ and ' UPCRL_shared_end’
The runtine uses these addresses to nake a copy for each pthread of the
l'inker section. Then, during each shared <=> | ocal address conversion, an
of fset is used to convert between the |inker-assigned address for a given
shared pointer and its the address within a pthread’s copy of the static
data region

On ELF-based systens, the beginning and endi ng addresses are typically
provided by arranging for the UPCRL_shared_begin/end to be the first and
last variables in the linker section that the |inker sees (on nost |inker
this can be achieved by putting the synbols in separate 'first.o and
"last.o’ object files that are then passed to the linker as the first and
| ast objects on the |inker conmand |ine).

#i f def UPCR_USI NG_LI NKADDRS
extern char UPCRL_shared_begi n[1];
extern char UPCRL_shared_end[1];
#endi f

/* Default size of runtinme cache, if used. */
extern uintptr_t UPCRL_def aul t _cache_si ze

/* default flags to pass to upcr_attach, if upcr_startup_init() is used to
* bootstrap the runtinme */
extern int UPCRL_attach_fl ags

/* default pthreads per process: pass 0 if not using pthreads */
extern upcr_thread_t UPCRL_def aul t _pt hr eads_per _node

/* Name used to renane user’s main() function
* - optional: may be set to null. */
extern const char * UPCRL_mai n_nane

/* Hook for arbitrary per-process initializations */
extern void (*UPCRL_pre_spawn_init)();

/* Hook for arbitrary per-pthread initializations */
extern void (*UPCRL_per _pthread_init)();

/* Cache initialization function to pass to upcr_startup_attach()

* - |Inplenentation note: upcc uses 'upcri_init_cache’, and this can be used
* by other systems. */

extern void (*UPCRL_cache_init)(void *start, uintptr_t len);

/* Heap initialization function to pass to upcr_startup_attach():

* - Inplenentation note: upcc uses 'upcri_init_heaps’, and this can be used
* ot her systens. */

extern void (*UPCRL_heap_init)(void * start, uintptr_t len);

/* Static data initialization function to pass to upcr_startup_attach()
* - |Inplenentation note: upcc uses a function generated at link time for
* this. */
extern void (*UPCRL_static_init)(void *start, uintptr_t len);
/* Function to ensure MPI has been initialized. Use only if both MPl and a
gasnet conduit are being used, else set to NULL. This function must not
call MPI_Init is it has already been called by gasnet (use
MPI _Initialized() to check). No other code in the application should cal
MPI _Init(), else behavior is undefined. */
extern void (*UPCRL_npi _init)(int *pargc, char ***pargv);

* ok ok ok ok

/* Function to ensure MPl is shut down at program conpletion. Use only if both
* MPI and a gasnet conduit are being used, else set to NULL. MPI_Finalize
* should only be called if the UPCRL_mpi _init function called
* MPl _Initialize(). No other code in the application should cal
*

MPI _Finalize(), else behavior is undefined. */
extern void (*UPCRL_npi _finalize)();

/* terminate the current job with a given exit code - non-collective operation
this function may be called by any thread at any tine after initialization and will cause the
systemto flush all I/O release all resources and terninate the job for all active threads
this function is called automatically by the runtinme systemin the event of any
fatal error or catchable term nate-the-programsignals (e.g. segnmentation fault)
this function nust be called at the end of main() after a barrier to ensure proper systemexit
the console which initiated the current job will receive the provided exitcode
as a programreturn value in a systemspecific way
if more than one thread calls upcr_global _exit() within a given synchronization phase
with different exitcode values, the value returned to the console will be one of the
provided exit codes (chosen arbitrarily)
| npl enent ati on notes:
gasnet may send a fatal signal to indicate a renpte node exited or crashed
calls gasnet_exit to termnate the job on renote nodes
*/
voi d upcr_gl obal _exit(int exitcode);

/* UPCR_BEG N_FUNCTION() - this declaration nmust appear at the very beginning of every function
(before any declarations) in generated code that intends to call any of the entry points
provided by this API. It provides the runtine systemw th a place for mininmal per-function
initialization that may be necessary on sone platforms, particularly when pthreads are used

*/

#def i ne UPCR_BEG N_FUNCTI ON() ???

/* UPC thread nunmber: this is an unsigned integral type used to represent the
0-to-(N-1) thread numbers of UPC threads within an application. The size of this type nmay
vary dependi ng on the shared pointer representation used

*/
typedef ??? upcr_thread_t;
/* Job Layout Queries - Interrogate thread information
*/

upcr _thread_t upcr_nythread(); /* returns a 0-based UPC thread index */
upcr _thread_t upcr_threads(); /* returns the nunber of UPC threads in the system */

/* When pthreads are used, UPC threads may be >= gasnet nodes. */

upcr _thread_t upcr_mynode(); /* returns a 0O-based GASNet node index */
upcr _thread_t upcr_nodes(); /* returns the nunber of GASNet nodes in the system */

System paraneters

Provi ded by the runtime systeminplenentation to describe the runtime environnent

Most of this information is probably al so made avail able to the UPC transl ator

at UPC-to-C conpile-tine (by some nechani smnot specified here),

but some conpilers may sinply wish to generate generic code that conpiles to have the
correct behavior at C conpile tinme using these preprocessor synbols

*/
#def i ne UPCR_MAX_BLOCKSI ZE ~ ???
#def i ne UPCR_MAX_THREADS ???

/* 1 nplenentors note:
all code should be witten such that UPCR_MAX THREADS can sinply be changed (up to 2731-1) and
the systemreconpiled to increase the thread limt
all code should be witten such that UPCR_MAX BLOCKSI ZE can sinply be changed
(along with a possible change to the type used to represent phase in upcr_shared_t)
and the systemreconpiled to increase the block size limt

*/

/* UPCR_PLATFORM ENVI RONMENT provi des the platformindependent UPC conpiler with

* sonme clues about the menory layout of the current platformto aid optimzation

* trade-offs.

* The possible configuration values are:

* UPCR_PURE_SHARED - purely shared nenory, renote nmenory accesses are handled entirely

* by hardware with no software interpretation overhead

* UPCR_PURE_DI STRI BUTED - purely distributed menory, renote nenory accesses are handl ed by sone
* software networking |ayer

* UPCR_SHARED DI STRIBUTED - a nixture of the above - sone renopte nmenory accesses are handl ed
* by hardware, others by a software networking |ayer

* UPCR_OTHER - any configuration not captured by the above options

*/

#def i ne UPCR_PLATFORM ENVI RONMENT ?7??

/* size of menory page on operating system in bytes */
#def i ne UPCR_PAGESI ZE ???

Shared Pointer Representation

*** upcr_shared_ptr_t - general shared pointer
*** ypcr_pshared_ptr_t - "phase-less" shared pointer, blocksize == 1 or bl ocksize indef

opaque types representing a generic (i.e. untyped) shared pointer defined by upcr
and used by generated code. In general, generated code NEVER | ooks inside

this opaque type, but there nay be cases where we want to expose sone
information to the UPC optim zer.

Note these two shared pointer categories are NOT interchangeable - the generated code
must explicitly select the correct category pointer for the current static bl ocksize and
call the correct version of the appropriate entry points bel ow

*/

typedef ??? upcr_shared_ptr_t;

typedef ??? upcr_pshared_ptr_t;

/*
Shared poi nter phase: represents the phase of a shared pointer, i.e., the index of the current
elenent in the current block of shared menory. This is an unsigned integral type, whose size
may vary dependi ng on the shared pointer inplenmentation.

*/

typedef ??? upcr_phase_t;

/* I nplenentation Notes:
The contents of these typedefs is NOT part of the specification and will
vary with inplenentation. Therefore, the fields shown should NOT be accessed
by the generated code or conpiler
typedef struct {
uintptr_t _local addr; /1 make this the first field to speed pointer use
unsi gned short _threadid; // use shorts so the entire struct fits in 2 words
unsi gned short _phase;
} upcr_shared_ptr_t

typedef struct {

uintptr_t _local addr; /1 make this the first field to speed pointer use
short _threadid; /'l use shorts so the entire struct fits in 2 words
} upcr_pshared_ptr_t
*/
/* __ */
/*

Shared Poi nter Manipul ation

*/

/* Convert a shared ptr with affinity to the current thread
into a local pointer.
If sptr does not have affinity to the calling thread the
result is inplenmentation-specific
*/
voi d *upcr_shared_to_Il ocal (upcr_shared_ptr_t sptr);
voi d *upcr_pshared_to_| ocal (upcr_pshared_ptr_t sptr);

/* Convert a local ptr into the current thread s shared nmenory space into
a shared pointer appropriate for use in renpte operations fromother threads.
The phase field is set to zero. Sone inplenentations may issue an error if Iptr
does not point into the shared region for the current thread.
Note this operation is not accessible fromthe UPC source level, but may be useful
for generated code nonetheless (e.g. to support a debugger)
The _ref versions nodify a shared pointer in place rather than returning a
shared pointer value, which may be nore efficient in some inplenmentations

*/

upcr _shared_ptr_t upcr_local _to_shared(void *Iptr);

voi d upcr_local _to_shared_ref(void *Iptr, upcr_shared_ptr_t *result);

upcr _pshared_ptr_t upcr_|local _to_pshared(void *Iptr);
voi d upcr _local _to_pshared_ref(void *Iptr, upcr_pshared_ptr_t *result);

/* Same as above, but sets the phase and thread to a particul ar val ue.
phase is expressed in nunber of elenents
*/

upcr _shared_ptr_t upcr_l ocal _to_shared_wi t hphase(void *I|ptr, upcr_phase_t phase, upcr_thread_t threadid);

voi d upcr_local _to_shared_ref_w thphase(void *Iptr, upcr_phase_t phase, upcr_thread_t threadid,
upcr _shared_ptr_t *result);

/* Convert back and forth between shared and pshared representations
upcr _pshared_to_shared sets phase to zero
The _ref versions nodify a shared pointer in place rather than returning a
shared pointer value, which may be nore efficient in some inplenmentations
*/

upcr _pshared_ptr_t upcr_shared_t o_pshared(upcr_shared_ptr_t sptr);
voi d upcr_shared_to_pshared_ref (upcr_shared_ptr_t sptr, upcr_pshared_ptr_t *result);

upcr _shared_ptr_t upcr_pshared_to_shared(upcr_pshared_ptr_t sptr);
voi d upcr_pshared_to_shared_ref (upcr_pshared_ptr_t sptr, upcr_shared_ptr_t *result);

/* Same as above, but sets the phase to a particular val ue.
phase is expressed in nunber of elenents
*/

upcr _shared_ptr_t upcr_pshared_to_shared_w t hphase(upcr_pshared_ptr_t sptr, upcr_phase_t phase);

voi d upcr_pshared_to_shared_ref_withphase(upcr_pshared_ptr_t sptr, upcr_phase_t phase,
upcr _shared_ptr_t *result);

/* reset the phase field of a given shared pointer to zero
(used for casting between bl ock sizes)
*/

upcr _shared_ptr_t upcr_shared_reset phase(upcr_shared_ptr_t sptr);
voi d upcr_shared_reset phase_ref (upcr_shared_ptr_t *sptr);

/* Returns the thread nunber that has affinity to the given shared pointer,
or 0 for a NULL shared pointer. |If sptr is not a valid shared pointer,
the results are undefined.

*

/

upcr _thread_t upcr_threadof _shared(upcr_shared_ptr_t sptr);
upcr _thread_t upcr_threadof _pshared(upcr_pshared_ptr_t sptr);

/* Returns the phase field of the given shared pointer,
Returns O for a NULL shared pointer or any pshared pointer
phase is expressed in nunber of elenents

*

/

upcr _phase_t upcr_phaseof _shared(upcr_shared_ptr_t sptr);
upcr _phase_t upcr_phaseof _pshared(upcr_pshared_ptr_t sptr); /* always returns zero */

/* Returns an inplenentation-defined value reflecting the |ocal address
of the object pointed to. This may or may not be the actual virtual address
where the object is stored - use upcr_to_local () when casting shared pointers

to local pointers.
*/
uintptr_t upcr_addrfield_shared(upcr_shared_ptr_t sptr);
uintptr_t upcr_addrfield_pshared(upcr_pshared_ptr_t sptr);

/* upcr_affinitysize cal cul ates the exact size of the local portion of the data
in a shared object with affinity to a given thread, specified by threadid.
total size should be the total nunber of bytes in the shared object.
nbytes is the block size in BYTES.

*/

size_t upcr_affinitysize(size_t totalsize, size_t nbytes, upcr_thread_t threadid);

/* return non-zero iff the given shared pointer is a null reference */

int upcr_isnull_shared(upcr_shared_ptr_t sptr);
int upcr_isnull_pshared(upcr_pshared_ptr_t sptr);

/* Return non-zero iff the given pointer is not valid, i.e., is not NULL, and
* does not point to a valid shared nenory address on sone thread */

int upcr_isvalid_shared(upcr_shared_ptr_t *p);

int upcr_isvalid_pshared(upcr_pshared_ptr_t *p);

/* Set a shared ptr to NULL. */

int upcr_setnull _shared(upcr_shared_ptr_t *p);
int upcr_setnull _pshared(upcr_pshared_ptr_t *p);

/* Shared pointer increnments/decrenents -
add a positive or negative displacenent to a shared pointer.
Both the inc and bl ockel ens argunents shoul d be expressed in nunber of elenents
elensz is the target element size in bytes
The "add" versions return an updated shared pointer,
the "inc" versions nodify the input shared pointer in place.

Pointers with a definite static blocksize > 1 should use the "shared" version,
shared pointers with indef blocksize use the "psharedl" version

shared pointers with bl ocksize == 1 use the "psharedl" version

*/

upcr _shared_ptr_t upcr_add_shared(upcr_shared_ptr_t sptr, size_t elensz, ptrdiff_t inc, size_t blockel ens);
voi d upcr _i nc_shared(upcr_shared_ptr_t *psptr, size_t elensz, ptrdiff_t inc, size_t blockel ens);
upcr _pshared_ptr_t upcr_add_psharedl (upcr_pshared_ptr_t sptr, size_t elensz, ptrdiff_t inc);

voi d upcr _i nc_pshar edl (upcr_pshared_ptr_t *psptr, size_t elemsz, ptrdiff_t inc);

upcr _pshared_ptr_t upcr_add_psharedl(upcr_pshared_ptr_t sptr, size_t elensz, ptrdiff_t inc);

voi d upcr _i nc_psharedl(upcr_pshared_ptr_t *psptr, size_t elemsz, ptrdiff_t inc);

/* return non-zero iff ptrl and ptr2 are both null,

or if they currently reference the same nmenory | ocation
*/
int upcr_isequal _shared_shared(upcr_shared_ptr_t ptrl, upcr_shared_ptr_t ptr2);
int upcr_isequal _shared_pshared(upcr_shared_ptr_t ptrl, upcr_pshared_ptr_t ptr2);
int upcr_isequal _pshared_pshared(upcr_pshared_ptr_t ptrl, upcr_pshared_ptr_t ptr2);
int upcr_isequal _shared_Il ocal (upcr_shared_ptr_t ptrl, void *ptr2);
i nt upcr_isequal _pshared_| ocal (upcr_pshared_ptr_t ptrl, void *ptr2);

/* Shared pointer / Shared pointer conparison and subtraction -
Conpare shared pointers sptrl and sptr2 and calculate sptrl - sptr2.
bl ockel ems is the block size for both ptrs, expressed in num el enents
(UPC type conpatibility semantics require both pointers have the sanme bl ocksize)
elensz is the target element size in bytes

Pointers with a definite static blocksize > 1 should use the "shared" version,
shared pointers with indef blocksize use the "psharedl" version
shared pointers with bl ocksize == 1 use the "psharedl" version

There are three possible cases:
returns O if sptrl and sptr2 currently reference the sane nmenory cell (i.e. upcr_isequal () would return true)
returns a positive or negative value N (an el ement count) to indicate that
upcr _add_shared(sptr2, elemsz, N, blockelenms2) would yield a shared pointer that is upcr_isequal () to sptrl
(if N>0, we say that sptrl is "greater than" sptr2, and if N< O we say that sptrl is "less than" sptr2)
otherwi se, fatal error if there is no value which can be added to sptrl to make it equal sptr2
(e.g. sptrl and sptr2 are indef blocksize pointers with different affinities)
*/

ptrdiff_t upcr_sub_shared (upcr_shared_ptr_t sptrl, upcr_shared ptr_t sptr2, size_t elensz, size_t blockel ens);
ptrdiff_t upcr_sub_psharedl (upcr_pshared_ptr_t sptrl, upcr_pshared_ptr_t sptr2, size_t elensz);
ptrdiff_t upcr_sub_psharedl(upcr_pshared_ptr_t sptrl, upcr_pshared_ptr_t sptr2, size_t elensz);

/* Affinity checks - return non-zero iff the given shared pointer currently
has affinity to the calling thread (or indicated thread, respectively)

int upcr_hasMAffinity_shared (upcr_shared_ptr_t sptr);
int upcr_hasM/Affinity_pshared(upcr_pshared_ptr_t sptr);

int upcr_hasAffinity_shared (upcr_shared_ptr_t sptr, upcr_thread_t threadid);
int upcr_hasAffinity_pshared(upcr_pshared_ptr_t sptr, upcr_thread_t threadid);

Shared Menmory Accesses

Transfer scalar values to/fromshared nmenmory which may or nmay not be renote
These comments apply to all put/get functions

Only functions suffixed with ' _strict’ can be used to inplenent a strict

operation: all other data nmovement functions in this specification are

implicitly rel axed

nbytes should be a conpile-tine constant whenever possible

nbytes nust be >= 0 and has no maxi mum si ze, but inplenentations

will likely optimze for snall powers of 2
source and target addresses (both |ocal and shared) are assuned to be properly

al i gned for accessing objects of size nbytes

if nbytes extends beyond the current block the results are undefined

destof fset(srcoffset) is an optional positive or negative BYTE offset, which is added to

the address indicated by dest(src) to determ ne the target(source) address for the put(get) operation

(Useful for puts(gets) with shared structures)

i f addi ng the nunber of bytes indicated by destoffset(srcoffset) to dest(src) would cause

dest(src) to pass the end of the current block, the result is undefined

If the source and target nenory areas overlap (for nenory-to-nmenory transfers) but do not exactly coincide

the resulting target nenory contents are undefined

I npl ementations are likely to optinmize for the inportant special case of zero destoffset(srcoffset)

*/

/* UPCR_ATOM C_MEMSI ZE() is a macro describing the datatype sizes at which nmenory accesses

will be done atomically. Gven a datatype width sz (in bytes) it will return non-zero at conpile tine
iff a local or shared menory access of exactly sz bytes, to an address aligned by sz bytes, will happen
atomically with respect to accesses fromother threads to the same | ocation

A non-zero return value for a given size does not guarantee atomicity for smaller sizes
or unaligned accesses of the given size

Some architectures may provide no atonic sizes

UPCR_ATOM C MEMSI ZE(0) will return the largest atonmic size available, or zero if none exists

*
/
#define UPCR_ATOM C_MEMSI ZE(sz) ?7??
/* --- Blocking menmory-to-nenory puts and gets ---
A call to these functions will block until the transfer is conplete
and the contents of the destination nmenory are undefined until it conpletes

If the contents of the source menory change while the operation is in progress
the result will be inplenentation-specific
The ' _strict’ versions inplenent strict UPC puts/gets. It is an error for any
nonbl ocking (relaxed or strict) operation to overlap a strict put/get.
*/
voi d upcr_put_shared (upcr_shared_ptr_t dest, ptrdiff_t destoffset, const void *src, size_t nbytes);
voi d upcr_put _pshared(upcr_pshared_ptr_t dest, ptrdiff_t destoffset, const void *src, size_t nbytes);
voi d upcr_put_shared_strict (upcr_shared_ptr_t dest, ptrdiff_t destoffset, const void *src, size_t nbytes);
voi d upcr_put _pshared_strict(upcr_pshared_ptr_t dest, ptrdiff_t destoffset, const void *src, size_t nbytes);

voi d upcr_get_shared (void *dest, upcr_shared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);
voi d upcr_get _pshared(voi d *dest, upcr_pshared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);
voi d upcr_get_shared_strict (void *dest, upcr_shared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);
voi d upcr_get _pshared_strict(void *dest, upcr_pshared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

/* --- Non-bl ocki ng operations ---

The followi ng functions provide non-bl ocking, split-phase menory access to shared data

Al'l such non-bl ocking operations require an initiation (put or get) and a subsequent
synchroni zati on on the conpletion of that operation before the result is guaranteed

Synchroni zati on of a get operation neans the local result is ready to be exani ned, and
will contain a value held by the shared location at some tine in the interval between
the call to the initiation function and the successful conpletion of the synchronization
(note this specifically allows inplementations to delay the underlying read

until the synchronization operation is called, provided they preserve the blocking
semanti cs of the synchronization function)

Synchroni zati on of a put operation neans the source data has been witten to the shared |ocation
and get operations issued subsequently by any thread will receive the new value or a
subsequently witten val ue (assumng no other threads are witing the |ocation)

There are two categories of non-bl ocki ng operations
"explicit handle" (nb) - return a specific handle to caller which is used for synchronization

this handl e can be used to synchroni ze a specific subset of the nb operations in-flight
"inmplicit handle" (nbi) - don’t return a handle - synchronization is acconplished
by calling a synchronization routine that synchronizes all outstanding nbi operations

Note that the order in which non-blocking operations conplete is intentionally unspecified -
the systemis free to coal esce and/or reorder non-bl ocking operations with respect to other
bl ocki ng or non-bl ocki ng operations, or operations initiated froma separate thread -
the only ordering constraints that nust be satisfied are those explicitly enforced using
the synchronization functions (i.e. the non-blocking operation is only guaranteed to occur
somewhere in the interval between initiation and successful synchronization on that operation).

The conpiler bears full responsibility for maintaining the menory consistency semantics
presented to the UPC user when using non-bl ocking operations - the conpiler nust generate
synchroni zations at the appropriate points (e.g. before calling upcr_unlock() or upcr_notify())

I npl ementors should attenpt to make the non-bl ocking operations return as quickly as possible -
however in some cases (e.g. when a | arge nunber of non-bl ocki ng operations have been issued
or the network is otherwi se busy) it may be necessary to block tenporarily while waiting
for the network to becone available. In any case, all inplenentations nmust support an
unlimted nunber of non-blocking operations in-progress - that is, the client is free
to issue an unlimted number of non-bl ocking operations before issuing a sync operation
and inpl ementations nust handle this correctly w thout deadl ock

The ' _strict’ versions of these functions inplenent strict nonbl ocking UPC puts/gets.
It is an error for any nonbl ocking (relaxed or strict) operation to overlap a strict put/get.
Only one strict nonbl ocki ng operation may be pending at any tine, and no other operation
(relaxed or strict) may be initiated or conpleted in between that strict operation’'s
initiation and its conpletion
*/

/* upcr_handle_t is a datatype used for representing a non-bl ocking
operation currently in-flight that was initiated with an "explicit handle"
non- bl ocki ng operation. The contents are inplenmentation-defined
UPCR_| NVALI D_HANDLE is a conpile-tine constant which can be used as a "dummy"
handl e val ue, which is ignored by all the operations that take upcr_handle_t’'s
furthernore this value nust be the result of setting all the bits in the
upcr _handl e_t datatype to zero
I npl ementations are free to define the upcr_handle_t type to be any
reasonabl e and appropriate size, although they are recomended to use a
type which fits within a single standard register on the target architecture
In any case, the datatype should be wi de enough to express at |east 2716-1
di fferent handle values, to prevent limting the nunber of non-bl ocking operations
in progress due to the nunber of handl es avail able
upcr _handl e_t values are thread-specific
In other words, it is an error to obtain a handle value by initiating a non-bl ocking
operation on one thread, and later pass that handle into a synchronization function
froma different thread (results are undefined).
Simlarly, synchronization functions for "inplicit handle" non-bl ocki ng operations
only synchronize on "inplicit handl e" operations initiated fromthe calling thread
It _is_legal to pass upcr_handle_t values into function callees or back to function callers
*/
typedef ??? upcr_handle_t;
#defi ne UPCR_| NVALI D_HANDLE ???

/* --- Non-bl ocking nenmory-to-nmenory, explicit handle (nb) ---
These calls initiate a non-blocking operation and return "imedi ately" with a
non- bl ocki ng handl e that can be used to |ater synchronize the operation
using one of the explicit sync operations
Once the put version returns, the source nenory nay safely be overwitten
For the get version, if the contents of the source nenory change while the
operation is in progress the result will be inplenentation-specific
The contents of the destination nmenory address are undefined until a
synchroni zati on conpl etes successfully for the non-bl ocki ng operation
The operations may return UPCR_I NVALI D HANDLE to indicate it was possible to conplete
the operation inmmediately without blocking (e.g. operations on shared nenory
with affinity to this thread)
It is an error to discard the upcr_handle_t value for an operation in-flight -
i.e. to initiate an operation and never synchronize on its conpletion
*/
upcr _handl e_t upcr_put_nb_shared (upcr_shared_ptr_t dest, ptrdiff_t destoffset
const void *src, size_t nbytes);
upcr _handl e_t upcr_get_nb_shared (void *dest, upcr_shared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

upcr _handl e_t upcr_put_nb_pshared(upcr_pshared_ptr_t dest, ptrdiff_t destoffset
const void *src, size_t nbytes);
upcr _handl e_t upcr_get_nb_pshared(void *dest, upcr_pshared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

upcr _handl e_t upcr_put_nb_shared_strict (upcr_shared_ptr_t dest, ptrdiff_t destoffset
const void *src, size_t nbytes);
upcr _handl e_t upcr_get_nb_shared_strict (void *dest, upcr_shared _ptr_t src, ptrdiff_t srcoffset,
size_t nbytes);
upcr _handl e_t upcr_put_nb_pshared_strict (upcr_pshared_ptr_t dest, ptrdiff_t destoffset
const void *src, size_t nbytes);
upcr _handl e_t upcr_get_nb_pshared_strict(void *dest, upcr_pshared_ptr_t src
ptrdiff_t srcoffset, size_t nbytes);

/* --- Explicit handle synchronization (for get_nb and put_nb) ---
upcr supports two basic variants of synchronization for non-bl ocki ng operations -
trying (polling) and waiting (bl ocking).
Al'l explicit synchronization functions take one or nore upcr_handl e_t val ues
as input and either return an indication of whether the operation has conpl eted
or block until it conpletes
*/

/* Single operation explicit synchronization

Synchroni ze on the conpletion of a single, particular non-blocking operation
that was initiated by this thread

upcr _wai t_syncnb() blocks until the specified operation has conpl et ed
(or returns imediately if it has already conpleted).
In any case, the handle value is "dead" after upcr_wait_syncnb() returns and
may not be passed to future synchronization operations

upcr _try_syncnb() always returns imrediately, with the value 1 if the
operation is conplete (at which point the handl e value is "dead", and may
not be used in future synchronization operations), or O if the operation is
not yet conplete and future synchronization is necessary to conplete this operation

upcr _{try,wait}_syncnb_strict() operate just as upcr_{try.wait}_syncnb() do
but nust be used for strict operations (and only for strict operations).

It is legal to pass UPCR | NVALI D HANDLE as input to these functions
upcr _wai t_syncnb{, _strict}(UPCR_| NVALI D HANDLE) return i medi ately and
upcr _try_syncnb{, _strict}(UPCR_| NVALI D HANDLE) return 1

It is an error to pass a upcr_handle_t value for an operation which has already
been successfully synchroni zed using one of the explicit synchronization functions
and doi ng so has undefined results
*/
voi d upcr_wai t _syncnb(upcr_handl e_t handl e)
int upcr_try_syncnb(upcr_handl e_t handl e)
voi d upcr_wait_syncnb_strict(upcr_handl e_t handl e)
int upcr_try_syncnb_strict(upcr_handle_t handle)

/* Multiple operation explicit synchronization

Synchroni ze on the conpletion of an array of non-bl ocki ng operation handl es
(all of which were initiated by this thread).

numhandl es specifies the nunber of handles in the provided array of handles
requires nunmhandles >= 0

upcr_wait_syncnb_all () blocks until all the specified operations have conpl eted
(or returns imediately if they have all already conpleted).

upcr _try_syncnb_all () always returns inmediately, with the value 1 if al
the specified operations have conpleted, or O if one or nore of the operations
is not yet conplete and future synchronization is necessary to conplete sone
of the operations

upcr _try_syncnb_all () will nodify the provided array to reflect conpletions -
handl es whose operations have conpleted are overwitten with the val ue UPCR | NVALI D_HANDLE,
and the client nay test against this value when upcr_try_syncnb_all () returns 0
to determi ne which operations are conplete and which are still pending

i mpl enentations of upcr_wait_syncnb_all () _may_ nodify the provided array to reflect conpletions
but this is not required (and not necessarily for the client since it always blocks until all
operations in the list are conplete)

It is legal to pass the value UPCR | NVALI D HANDLE in sone or all of the array entries

and both functions will ignore them so those val ues have no effect on behavior
If all entries in the array are UPCR_I NVALI D HANDLE (or nunmhandl es==0), then
upcr _try_syncnb_all () will return 1

Note that there are no strict variants, since the UPC nenory consi stency
model prohibits multiple outstanding strict operations
*/

voi d upcr_wait_syncnb_all (upcr_handl e_t *, size_t numhandl es)
int wupcr_try_syncnb_all (upcr_handle_t *, size_t numhandl es)

/*

These operate anal ogously to the syncnb_all variants, except they only
wait/test for at |east one operation corresponding to a _valid_ handle in the
provided list to be complete (the valid handles values are all those which are not
UPCR_| NVALI D_HANDLE)

Specifically, upcr_wait_syncnb_some() will block until at |east one of the
valid handles in the Iist has conpleted, and indicate the operations that have
conpl eted by setting the corresponding handles to the val ue UPCR_| NVALI D_HANDLE

Simlarly, upcr_try_syncnb_some will check if at |east one valid handle in the
list has conpleted (setting all conpleted handles to UPCR_ | NVALI D HANDLE) and
return 1 if it detected at |east one conpletion or O otherwi se (except as bel ow)

Both functions ignore UPCR | NVALI D HANDLE val ues. If the input list is enpty or
consists only of UPCR_| NVALI D_HANDLE val ues, upcr_wait_syncnb_some wl |

return i mredi ately and upcr_try_sync_some will return 1
*/

voi d upcr_wait_syncnb_some(upcr_handl e_t *, size_t nunmhandl es)
int upcr_try_syncnb_sone(upcr_handle_t *, size_t numhandl es)

/* --- Non-bl ocking menory-to-nmenory, inplicit handle (nbi) ---
These calls initiate a non-blocking operation and return "i medi atel y"
the operation nust |later be conpleted using a call to one of the inplicit sync functions
Once the put version returns, the source nenory nay safely be overwitten
For a get operation, if the contents of the source nenobry change while the operation is in progress
the result will be inplenmentation-specific
The contents of the destination nmenory address are undefined until a
synchroni zati on conpl etes successfully for the non-bl ocki ng operation
There are no strict nbi operations, as the UPC nmenory consistency nodel prohibits multiple
out standing strict operations
*/
voi d upcr_put _nbi _shared (upcr_shared_ptr_t dest, ptrdiff_t destoffset,
const void *src, size_t nbytes);
voi d upcr_get _nbi _shared (void *dest, upcr_shared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

voi d upcr_put _nbi _pshared(upcr_pshared_ptr_t dest, ptrdiff_t destoffset,
const void *src, size_t nbytes);
voi d upcr_get _nbi _pshared(voi d *dest, upcr_pshared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

/* --- Inplicit handle synchronization (for get_nbi and put_nbi) --- */
/* Synchronize on an inplicit list of outstanding non-bl ocking operations
These functions inplicitly specify a set of non-blocking operations on which to synchronize -
either all outstanding inplicit-handle gets initiated by this thread
all outstanding inplicit-handle puts initiated by this thread
or all outstanding inplicit-handl e operations (both puts and gets) initiated by this thread
(where outstanding is defined as all those operations which have been initiated
but not yet conpleted through a successful inplicit-handle synchronization).
The wait variants block until all operations in this inplicit set have conpl eted
The try variants test whether all operations in the inplicit set have conpleted
and return 1 if so (or if there are no outstanding inplicit-handl e operations)
or 0 otherw se
Inplicit synchronization functions will synchroni ze operations initiated within
other function frames by this thread
As with the initiation functions, there are no strict variants here
*/

voi d upcr_wai t_syncnbi _gets();
voi d upcr_wai t _syncnbi _puts();
voi d upcr_wait_syncnbi _all ();
int upcr_try_syncnbi_gets();
int upcr_try_syncnbi_puts();
int upcr_try_syncnbi_all();

/* --- Inplicit region synchronization --- */

/* In sone cases, it may be useful or desirable to initiate a nunber of non-bl ocking
shar ed- menory operations (possibly wi thout knowi ng how many at conpile-tine) and
synchroni ze themat a later time using a single, fast synchronization

Sinple inplicit handl e synchroni zation may not be appropriate for this situation if
there are intervening inplicit accesses which are not to be synchronized
This situation could be handl ed using explicit-handl e non-bl ocki ng operations and a
list synchronization (e.g. upcr_wait_syncnb_all()), but this may not be desirable
because it requires managi ng an array of handl es (which could have negative cache
effects on performance, or could be expensive to allocate when the size is not known
until runtine).
To handl e these cases, we provide "inplicit access region" synchronization, described bel ow.
*/

/* upcr_begi n_nbi _accessregion() and upcr_end_nbi _accessregion() are used to define an
inmplicit access region (any code which dynamically executes between the begin and
end calls is said to be "inside" the region)
The begin and end calls nust be paired, and may not be nested recursively or the results
are undefined
It is erroneous to call any inplicit-handle synchronization function within the region
Al'l inmplicit-handl e non-bl ocking operations initiated inside the regi on become "associ at ed”
with the abstract region handl e being constructed. upcr_end_nbi _accessregion() returns an
explicit handl e which collectively represents all the associated inplicit-handl e operations
(those initiated within the region).
This handl e can then be passed to the regular explicit-handl e synchronization functions
and will be successfully synchronized when all of the associated non-bl ocking
operations initiated in the regi on have conpl et ed
The associ ated operations cease to be inplicit-handl e operations, and are _not_ synchroni zed
by subsequent calls to the inplicit-handl e synchronization functions (e.g. upcr_wait_syncnbi_all())
Explicit-handl e operations initiated within the region operate as usual and do _not_ becone
associated with the region
*/

voi d upcr _begi n_nbi _accessregi on();
upcr _handl e_t upcr_end_nbi _accessregi on();
/* sanpl e code:

upcr _begi n_nbi _accessregion(); // begin the region

upcr _put _nbi _shared(...); // becomes associated with this region
while (...) {
upcr _put _nbi _shared(...); // becomes associated with this region

h2 = upcr_get_nb_shared(...); // unrelated explicit-handl e operation not associated with region
upcr _wai t_syncnb(h2);

handl e = upcr_end_nbi _accessregion(); // end the region and get the handle
/'l other code, which may include unrelated inplicit-handl e operations+syncs, or other regions,

upcr _wai t_syncnb(handle); // wait for all the operations associated with the region to conplete
*/

/* --- Register-nmenory operations --- */

/* upcr_register_value_t represents the largest unsigned integer type that can fit entirely
in asingle CPU register for the current architecture and ABI.
SI ZEOF_UPCR REG STER T is a preprocess-time literal integer constant (i.e. not "sizeof()")
indicating the size of this type in bytes
*/
typedef unsigned ??? upcr_register_value_t;
#def i ne S| ZEOF_UPCR_REG STER VALUE_ T ???

/* the value fornms of put - these take the value to be put as input paraneter to avoid
forcing outgoing values to |ocal nenory in generated code.
O herwi se, the behavior is identical to the nenory-to-nenory versions of put above
requires: nbytes > 0 && nbytes <= S| ZEOF_UPCR _REGQ STER VALUE T

etc

The value witten to the target address is a direct byte copy of the 8*nbytes |ow order bits of val ue,

witten with the endianness appropriate for an nbyte integral value on the current architecture
The non- bl ocking forms of val ue put nust be synchronized using the explicit or inplicit
synchroni zation functions defined above, as appropriate
The semantics of the _strict versions are the sane as for the regular, non-value put/get functions
*/
voi d upcr_put _shared_val (upcr_shared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_value_t value, size_t nbytes);
voi d upcr_put_shared_val _strict (upcr_shared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_value_t value, size_t nbytes);
upcr _handl e_t upcr_put_nb_shared_val (upcr_shared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_val ue_t value, size_t nbytes);
upcr _handl e_t upcr_put_nb_shared_val _strict (upcr_shared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_val ue_t value, size_t nbytes);
voi d upcr_put _nbi _shared_val (upcr_shared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_value_t value, size_t nbytes);

voi d upcr_put _pshared_val (upcr_pshared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_val ue_t value, size_t nbytes);
voi d upcr_put _pshared_val _strict (upcr_pshared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_val ue_t value, size_t nbytes);
upcr _handl e_t upcr_put_nb_pshared_val (upcr_pshared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_val ue_t value, size_t nbytes);
upcr _handl e_t upcr_put_nb_pshared_val _strict (upcr_pshared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_val ue_t value, size_t nbytes);
voi d upcr_put _nbi _pshared_val (upcr_pshared_ptr_t dest, ptrdiff_t destoffset,
upcr _regi ster_val ue_t val ue, size_t nbytes);

/* bl ocking value get - these return the fetched value to avoid
forcing incomng values to local nenory in generated code.
O herwi se, the behavior is identical to the menory-to-nenory bl ocking get
requires: nbytes > 0 && nbytes <= SI ZEOF_UPCR REG STER VALUE T
The value returned is the one obtained by reading the nbytes bytes starting at the source address
wi th the endi anness appropriate for an nbyte integral value on the current architecture
and setting the high-order bits (if any) to zero (i.e. no sign-extension)
The semantics of the _strict versions are the same as for the regul ar,
non-val ue put/get functions
*/

upcr _regi ster_val ue_t upcr_get_shared_val (upcr_shared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

upcr _register_value_t upcr_get_shared_val _strict (upcr_shared_ptr_t src, ptrdiff_t srcoffset, size_t

nbyt es) ;

upcr _regi ster_val ue_t upcr_get_pshared_val (upcr_pshared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

upcr _register_value_t upcr_get_pshared_val _strict(upcr_pshared_ptr_t src, ptrdiff_t srcoffset, size_t

/* non-bl ocking value get - useful for NNC s that can target register-Ilike
storage such as T3E's eregisters or Quadric’s menory-mapped NIC FIFO s
these operate simlarly to the blocking formof value get, but are split-phase

nbyt es) ;

upcr_get_nb_(p)shared_val initiates a non-bl ocking val ue get and
returns an explicit handle which MJUST be synchroni zed using upcr_wait_syncnb_val get ()
upcr _wai t_syncnb_val get () synchroni zes an outstandi ng get_nb_val operation and
returns the retrieved value as described for the blocking version
Not e that upcr_val get_handl e_t and upcr_handle_t are conpletely different datatypes
and may not be interm xed (i.e. upcr_valget_handle_t's cannot be used with other explicit
synchroni zation functions, and upcr_handle_t’'s cannot be passed to upcr_wait_syncnb_val get ()
There is no try variant of value get synchronization, and no "nbi" variant
I npl ementors are reconmended to nake sizeof (upcr_val get_handl e_t) <= sizeof (upcr_register_val ue_t)
to facilitate regi ster reuse
*/
typedef ??? upcr_val get_handl e_t;

upcr _val get _handl e_t upcr_get _nb_shared_val (upcr_shared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

upcr _val get _handl e_t upcr_get_nb_shared_val _strict(upcr_shared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);
upcr _val get _handl e_t upcr_get_nb_pshared_val (upcr_pshared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

upcr _val get _handl e_t upcr_get_nb_pshared_val _strict(upcr_pshared_ptr_t src, ptrdiff_t srcoffset, size_t nbytes);

upcr _regi ster_val ue_t upcr_wait_syncnb_val get (upcr_val get _handl e_t handl e);

/* Bl ocking value puts/gets for floating-point quantities (float, double)
these operate simlarly to the blocking value puts/get for integral types, except are specialized
for the float and doubl e types on the current platform
the source/target address is assuned to be correctly aligned for accessing the given FP type
the primary notivation is to permit puts/gets directly between | ocal shared nmenory | ocations
and the floating point registers, without forcing the use of an integer register
or stack temporary as an intermediary (which would be otherw se necessary w thout these functions)
there are no non-bl ocking variants for these functions because they are nmeant primarily for
optim zing | ow | atency | ocal nenory accesses
*/
voi d upcr _put _shared_fl oatval (upcr_shared_ptr_t dest, ptrdiff_t destoffset, float value);
voi d upcr _put_shared_floatval _strict (upcr_shared_ptr_t dest, ptrdiff_t destoffset, float value);
voi d upcr _put _shar ed_doubl eval (upcr_shared_ptr_t dest, ptrdiff_t destoffset, double value);
voi d upcr _put _shared_doubl eval _strict (upcr_shared_ptr_t dest, ptrdiff_t destoffset, double value);
float wupcr_get_shared_floatval (upcr_shared_ptr_t src, ptrdiff_t srcoffset);
float wupcr_get _shared _floatval _strict (upcr_shared_ptr_t src, ptrdiff_t srcoffset)
doubl e upcr_get _shared_doubl eval (upcr_shared_ptr_t src, ptrdiff_t srcoffset);
doubl e upcr _get _shared_doubl eval _strict (upcr_shared_ptr_t src, ptrdiff_t srcoffset)

voi d upcr _put _pshared_floatval (upcr_pshared_ptr_t dest, ptrdiff_t destoffset, float value);

voi d upcr _put _pshared_floatval _strict (upcr_pshared_ptr_t dest, ptrdiff_t destoffset, float value);
voi d upcr _put _pshared_doubl eval (upcr_pshared_ptr_t dest, ptrdiff_t destoffset, double value);

voi d upcr _put _pshar ed_doubl eval _strict (upcr_pshared_ptr_t dest, ptrdiff_t destoffset, double value);
float wupcr_get _pshared_floatval (upcr_pshared_ptr_t src, ptrdiff_t srcoffset)

float wupcr_get_pshared_floatval _strict (upcr_pshared_ptr_t src, ptrdiff_t srcoffset);

doubl e upcr _get _pshared_doubl eval (upcr_pshared_ptr_t src, ptrdiff_t srcoffset)

doubl e upcr_get _pshared_doubl eval _strict (upcr_pshared_ptr_t src, ptrdiff_t srcoffset);

Shared Menory Bul k Menmory Operations

Transfer bul k data to/from shared nmenory which may be renote

Note these operations all take upcr_shared_ptr_t's (not phasel ess ptrs)

Al'l sizes are specified in BYTES, nbytes >= 0

Semantics are the same as those specified in the UPC spec

Inpl ementations will likely optim ze for |arger val ues of nbytes

If the source and target nenory areas overlap (but do not exactly coincide),
the resulting target nenory contents are undefined

The notivation for having nmenget and menput, separately fromthe nmenory ops above
- well defined semantics for crossing bl ock boundaries
- no alignnent constraints on the pointers
- non-bl ocki ng nenput constrains source nmenory from changi ng while operation is
in progress to avoid a potential buffering copy
- optimze for large sizes

I npl enentor’s notes:
upcr _nenset () can be inplemented on GASNet using a single small active message, which makes
it very efficient in ternms of network conmunication
*/

voi d upcr_menget (void *dst, upcr_shared_ptr_t src, size_t nbytes);

voi d upcr_nmenput (upcr _shared_ptr_t dst, const void *src, size_t nbytes);

voi d upcr_mencpy(upcr_shared_ptr_t dst, upcr_shared_ptr_t src, size_t nbytes);
voi d upcr_nenset (upcr_shared_ptr_t dst, int c, size_t nbytes);

/* non-bl ocking versions of the bul k menory operations
must be synchroni zed using explicit or inplicit synchronization as with
non- bl ocki ng scal ar menory access operations
The contents of the menory referenced by src nmust NOT change between
initiation and successful synchronization, or the result is undefined

upcr _nbi _menset is synchronized as if it were an inplicit-handl e put operation
*/

upcr _handl e_t upcr_nb_nenget (void *dst, upcr_shared_ptr_t src, size_t nbytes);

upcr _handl e_t upcr_nb_menput (upcr _shared_ptr_t dst, const void *src, size_t nbytes);

upcr _handl e_t upcr_nb_mentpy(upcr_shared_ptr_t dst, upcr_shared_ptr_t src, size_t nbytes);
upcr _handl e_t upcr_nb_menset (upcr_shared_ptr_t dst, int c, size_t nbytes);

voi d upcr_nbi _nenget (voi d *dst, upcr_shared_ptr_t src, size_t nbytes);

voi d upcr_nbi _nenput (upcr_shared_ptr_t dst, const void *src, size_t nbytes);

voi d upcr_nbi _nmencpy(upcr_shared_ptr_t dst, upcr_shared_ptr_t src, size_t nbytes);
voi d upcr _nbi _nenset (upcr_shared_ptr_t dst, int c, size_t nbytes);

Dynanmi ¢ Menory Al |l ocation

UPC runtime interface to generated code for nenory allocation
*/

/* Non-collective operation that allocates nblocks * blocksz bytes in the shared nmenory area
with affinity to this thread, and returns a pointer to the new data
which is suitably aligned for any kind of variable
Requi res nbl ocks >= 0 and bl ocksz >= 0
The menory is not cleared or initialized in any way, although it has been properly
registered with the network systemin a way appropriate for the current platform such
that renpte threads can read and wite to the nenory using upcr shared data transfer operations
If insufficient menory is available, the function will print an inplenmentation-defined
error nessage and terminate the job
*/

upcr _shared_ptr_t upcr_|local _alloc(size_t nblocks, size_t blocksz);

/* Non-col |l ective operation that allocates nbl ocks * bl ocksz bytes spread across the shared nenory area
of 1 or nore threads, and returns a pointer to the new data
which is suitably aligned for any kind of variable
Requi res nbl ocks >= 0 and bl ocksz >= 0

The menory is blocked across all the threads as if it had been created by the UPC decl aration
shared [bl ocksz] char[nbl ocks * blocksz] (i.e. both sizes are expressed in bytes).
Specifically, thread i allocates (at least):
Max({0} union {0 < n <= nblocks * blocksz | (floor(n-1/blocksz) % THREADS) == i}) bytes.
More specifically, thread i allocates (at least) this many bytes

bl ocksz * ceil (nblocks/ THREADS) if i <= (nblocks % THREADS)
bl ocksz * floor(nblocks/ THREADS) if i > (nblocks % THREADS)

I npl ementor’s note: Some inplenmentations may allocate the full (blocksz * ceil (nbl ocks/ THREADS))
menory on each thread for sinplicity, even though I ess may be required on sone threads

Note if nblocks == 1, then all the menmory will be allocated in the shared nenory space
of thread 0 (and inplenentations should attenpt not to waste space on other threads in this
common speci al case)

In all cases the returned pointer will point to a menory location in the shared nenory space
of thread 0, and any subsequent chunks in the shared space of other threads will be logically
aligned with this pointer (such that increnenting a shared pointer of the appropriate blocksz
past the end of a block on one thread will bring it to the start of the next block on the next thread).

The phase of the returned pointer is set to zero

The menory is not cleared or initialized in any way, although it has been properly registered
with the network systemin a way appropriate for the current platformsuch that renote threads
can read and wite to the nmenory using the upcr shared data transfer operations

If insufficient nmenory is available, the function will print an inplenmentation-defined error
message and terminate the job

*/

upcr _shared_ptr_t upcr_global _alloc(size_t nblocks, size_t blocksz);

/* Collective version of upcr_global _alloc() - the semantics are identical to upcr_global _alloc()
with the follow ng exceptions
* the function nust be called by all threads during the same synchroni zation phase
and all threads nust provide the sane argunents
* may act as a barrier for all threads, but might not in some inplenentations
* all threads receive a copy of the result, and the shared pointer values will

conpare equal (according to upcr_isequal _shared_shared()) on all threads
*/

upcr _shared_ptr_t upcr_all _alloc(size_t nblocks, size_t blocksz);

/* Non-collective operation used to deallocate a shared nenory region previously allocated
(but not deal | ocated) using one of: upcr_local _alloc(), upcr_global_alloc() or upcr_all_alloc().
If sptr is a null pointer the operation is ignored
The shared pointer val ue passed to upcr_free() nust be the sane val ue returned by the
al location function that created the region (i.e. it must point to the beginning of the object,
and for upcr_global _alloc() and upcr_all _alloc() the thread field nmust indicate thread 0).
If sptr has been freed by a previous call to upcr_free() or does not point to the beginning of
a live object in shared menory, the behavior is undefined

Note that any thread may call upcr_free() to free a given dynamnically-allocated shared object,
even if that object was created by a call to upcr_local _alloc() froma different thread

Al'so note that nenory allocated using upcr_all _alloc() should only be freed by a call to upcr_free()
froma _single_ thread
*/

voi d upcr_free(upcr_shared_ptr_t sptr)

The runtine provides split-phase barrier support
*/

#def i ne UPCR_BARRI ERFLAG_ANONYMOUS ?7??

/* Execute the notification for a split-phase barrier, with a barrier val ue
This is a non-bl ocking operation that conpletes inmediately after noting the barrier val ue
No synchronization is performed on outstanding menory accesses (i.e. the
conpiler is responsible for inserting the appropriate syncs to inplenent
the null strict reference inplied by upc_notify before calling upcr_notify())
Cenerates a fatal error if this is the second call to upcr_notify() on this thread
since the last call to upcr_wait() or the beginning of the program
flags should be 0 to indicate a normal barrier (which carries the value barrierval)
or UPCR_BARRI ERFLAG_ANONYMOUS to i ndicate an "anonynous" barrier, where the
barrierval argument is ignored and the notify automatically "matches" with any
anonynmous or non-anonynous val ue provided by the notify called on other threads
| npl enent ati on notes:
check value of thread' s notify/wait toggle which records current state of synchronization
save this thread' s barrier value and flags
increnment a counter of |ocal threads that called notify this epoch & return
last thread on this node to call upcr_notify()
checks the barrier values calls gasnet_notify() with appropriate flags then resets the counter
*/
voi d upcr_notify(int barrierval, int flags);

/* Execute the wait for a split-phase barrier, with a barrier val ue

This is a blocking operation that returns only after all threads have called upcr_notify()

No synchronization is performed on outstanding menory accesses (i.e. the

conpiler is responsible for inserting the appropriate syncs to inplenent

the null strict reference inplied by upc_wait after calling upcr_wait())

Cenerates a fatal error if there were no preceding calls to upcr_notify() fromthis thread
or if this is the second call to upcr_wait() since the last call to upcr_notify() on this thread

Generates a fatal error if flags is not equal to the flags val ue passed in the preceding
upcr_notify() call nade by this thread

Cenerates a fatal error if flags==0 and the supplied barrierval doesn't match the val ue provided
in the preceding upcr_notify() call made by this thread

Cenerates a fatal error if any two threads passed non-anonynmous barrier values which didn't nmatch
during the notify calls which began this barrier phase

I npl erent ati on not es:
check and toggle value of thread’s notify/wait status which records current state of synchronization
check that i matches previous value provided by thread in this barrier epoch
first thread to enter grabs a lock, spin waits until all threads have called notify (counter reset)
calls gasnet_wait with appropriate flags, (aborts if there is a msnatch reported)
and signals that wait is conplete by witing a barrier_done flag
all other threads either block on the lock (if they arrive during gasnet_wait) or nerely
see that wait is conplete and return the m smatch val ue
increnment a counter of |ocal threads that called wait this epoch & block (sleep or spin-wait)
last thread on this node to call upcr_wait calls gasnet_wait(i), then releases the other threads
when it returns
*/
voi d upcr_wait(int barrierval, int flags);

/* upcr_try_wait() functions simlarly to upcr_wait(), except that it always returns inmediately.
If the barrier has been notified by all threads, the call behaves as a call to upcr_wait()

with the same barrierval and flags, and returns the value 1
If the barrier has not yet been notified by sone thread

the call is a no-op and returns the value 0
Note this call is not mandated by the UPC spec, but nay be useful for performng purely |oca
conputation in optimzed code or perform ng system housekeepi ng duties

*/

int upcr_try_ wait(int barrierval, int flags);
/ K o o o o e . */
/ *

* Network polling

* =T

* The upcr_poll () function explicitly causes the runtime to attenpt to make

* progress on any network requests that may be pending. Wile many other

* runtime functions inplicitly do this as well (i.e. npost of those which cal

* the network layer) this function nay be useful in cases where a | arge anount

* of time has el apsed since the last runtine call (e.g. if a great deal of

* application-level calculation is taking place). This function may al so be

* indirectly when a upc_fence is used

*/

voi d upcr_pol |l ();

/ K o o o e m e — */
/ *

UPC | ocks

The followi ng assunes the updates in the UPC spec 1.1 regarding upc |ocks
namel y:
- upc_lock_t is an opaque shared datatype with inconplete type (prohibits
statically-allocated upc_|l ock_t objects)
- upc_lock_init() is no longer necessary or useful and is renopved
- upc_lock_free() is added to allow users to free dynamically-allocated | ocks
- UPC locks are _not_ recursive (a thread nust not attenpt to re-acquire a lock it already owns)

simlar to upc_lock_t, the runtinme |ock datatype is totally opaque and
al ways mani pul ated through upcr_shared_ptr_t pointers, which nust NEVER be
dereferenced by generated code
this spec intentionally doesn’'t even provide a name or size for the |ock datatype
the shared pointer returned by the lock allocation routines has reference senantics
(i.e. copying the pointer yields a reference to the same | ock)
but otherw se need not even be a real pointer. In other words, the thread affinity
and addrfield conponents of these shared pointers is conpletely undefined
so casting themto a local pointer on _any_thread may yield a pointer value which
doesn’t point to a valid nmenory address (or points to a random obj ect)
this allows inplenmentations which (for exanple) store an integer |ock identifier
in the address field rather than a true pointer
*/

/* non-collective operation (intended to be called by a single thread)
whi ch dynamically allocates and initializes a | ock
and returns a upcr_shared_ptr_t which references that |ock
If insufficient resources are available, the function will print an inplenentation-defined
error nessage and terminate the job
*/
upcr _shared_ptr_t upcr_global _| ock_alloc();

/* collective operation which dynanically allocates and initializes a |ock
and returns a upcr_shared_ptr_t which references that |ock
* the function nust be called by all threads during the same synchroni zation phase
* may act as a barrier for all threads, but might not in some inplenentations
* all threads receive a copy of the result, and the shared pointer values will
conpare equal (according to upcr_isequal _shared_shared()) on all threads
If insufficient resources are available, the function will print an inplenentation-defined
error nmessage and ternminate the job
*/
upcr _shared_ptr_t upcr_all _lock_alloc();

/* block until the referenced | ock can be acquired by this thread
if no other thread is currently holding or contending for the referenced |ock
this operation nmust return within a bounded amount of tine
i mpl enent ations should attenpt to provide fairness in the presence of
contention for this lock, but this property is not required
if lockptr does not reference a valid | ock object (i.e. one previously allocated by
upcr_gl obal _I ock_alloc() or upcr_all_lock_alloc() and not deall ocated using
upcr _lock_free()) then the results are undefined
if the current thread is already holding the referenced |ock, the result is undefined
(al though i nplenentations are reconmended to print a useful error message and abort)
*/
voi d upcr_| ock(upcr_shared_ptr_t |ockptr);

/* attenpt to acquire the referenced | ock w thout bl ocking

the operation always returns imrediately, with the value 1 if the | ock was
successfully acquired, or with the value 0 if the lock could not be acquired at this tine
if no other thread is currently holding or contending for the referenced | ock
repeated calls to this operation will eventually succeed within a bounded amount of tine
if lockptr does not reference a valid | ock object then the results are undefined
if the current thread is already holding the referenced |ock, the result is undefined
(al though inplementati ons are encouraged to print a useful error message and abort)
*/
int upcr_| ock_attenpt(upcr_shared_ptr_t |ockptr);

/* unlock the referenced | ock
this operation releases the referenced | ock, which nust have been previously I ocked
by this thread using upcr_lock(), or a successful call to upcr_lock_attenpt()
(otherwi se the results are undefined)
if lockptr does not reference a valid | ock object then the results are undefined
this operation always conpletes within a bounded amount of tine
i mpl enentations are encouraged to detect violations to the |ocking semantics
(e.g. unlock with no matching lock) but this is not required
*/
voi d upcr _unl ock(upcr_shared_ptr_t |ockptr);

/* free a lock - non-collective operation
this call (always made froma single thread) rel eases any systemresources
associated with the referenced | ock and makes the | ock object "invalid" for all threads
the | ock need not have been explicitly created by the current thread (i.e. it may have
been created by a call to upcr_global |ock_alloc() on a separate thread and passed to this one)
any subsequent calls fromany thread using this invalidated | ock object have undefined effects
if lockptr does not reference a valid |ock object then the results are undefined
this operation always conpletes within a bounded amount of tinme
repeated calls to upcr_lock free(upcr_global | ock_alloc()) nust succeed indefinitely
(i.e. it must actually reclaimany associ ated resources)
the call will succeed i mrediately regardl ess of whether the referenced lock is currently
unl ocked or currently | ocked (by any thread)
*/
voi d upcr_l ock_free(upcr_shared_ptr_t |ockptr);

~ -

L I

Statically-allocated user variabl es

The following interfaces provide portable support for statically-allocated user variables
(shared and unshared, scalar and array)
/

Thr ead- Local Data (TLD)

Thread-1 ocal data (TLD) is defined to be any NON-shared, statically-allocated

(i.e. not automatic lifetime) objects declared in UPC source files, nanely non-shared
file-scope (global) objects or static |ocal variables (bl ock-scope TLD).

TLD nmust be decl ared and accessed specially by generated code to ensure correct operation
across the variety of platforns inplenmenting the UPC runtime

The macros bel ow must be used to declare all TLD - global or static user unshared
variables (unless they are declared with 'extern’, or are located in a

regular Cfile (such as a header file with a name ending in ’'.h'), since if
pthreads are used, these variables will need to be nmade thread-specific

Static variables need to be transforminto global variables before this

macro can be used (and their names should be mangled to avoid nanme

col l'i si ons).

Since uses of these macros are intended to be filterable by tools like
grep, they nmust be used at the start of a newline, and their contents
cannot contain |ine breaks

L T R A N T R R NI

UPCR_TLD DEFI NE(nane, initval, size) nust be used when declaring
unshared gl obal /static variables that the user has initialized. The
macro takes the variable nanme of the value, and the size (in bytes, as a
single literal number--’sizeof’, expressions like '3 + 4, etc., are not
allowed). So the UPC conpiler should transform

int foo =5
on a platformwith 4 byte integers into

int
UPCR_TLD DEFI NE(foo, 4) =5
Unshared pointers to shared types (i.e. thread |ocal variables

with type upcr_shared_ptr_t or upcr_pshared_ptr_t) should be initialized
with UPCR_I NI TI ALI ZED { P} SHARED r at her than the value the user specified

ok ok ok ok ok Ok Ok Ok k% k% % % % oF

The full type of the variable nmust precede the nacro, and so arrays and
function pointers nmust use a typedef. For instance,

int natural _nums[3] ={ 1, 2, 3};
void (*int_taker)(int) = &rint_int;

Woul d becone

typedef int _type_natural _nuns[3];
_type_natural _nums
UPCR_TLD DEFI NE(natural _nums, 12) = { 1, 2, 3 };

_type_int_taker
UPCR_TLD DEFI NE(i nt _taker, 4) = &print_int;

For variables that are not explictly initialized by the user,
UPCR_TLD DEFI NE_TENTATI VE(nane, size) nust be used. The nacro

wor ks the same way as UPCR _TLD DEFI NE, except that it should not be
followed by "= initializer_expr."

*

*

*

*

*

*

*

*

*

*

*

*

* typedef void (*_type_int_taker)(int);
*

*

*

*

*

*

*

*

* For nore information on the uses of these macros, and the treatnent of

* thread-local data generally, see the web page on "static user data" in the
* Runtime docunmentation on the Berkeley UPC web site.

*

/

#defi ne UPCR_TLD DEFI NE(nane, size)
#def i ne UPCR_TLD_DEFI NE_TENTATI VE(nare, si ze)

/* UPCR_TLD ADDR: retrieve the address of the current thread' s representative

of the TLD variable with the given name (nane nust be a sinple identifier)

address is returned as a (void *) and should be cast to the proper type before use
*

/
#def i ne UPCR_TLD_ADDR(nane) ?7?7?

/* Exanpl e usage:
int x = *(int*)UPCR_TLD_ADDR(f 00);
(int)UPCR_TLD _ADDR(foo0) = 100;
((int*)UPCR_TLD _ADDR(natural))[2] = 27,
| npl enentors note:
UPCR_TLD ADDR() returns an address rather than an |-val ue because sone pl anned
i npl enentations of TLD may not have the TLD type information available
(TLD wi Il just be opaque bytes in a special data segment)
*/

/*
Statically-allocated Shared Data (SSD)

Statically-allocated Shared Data (SSD) is defined to be any shared,
statically-allocated (i.e. not automatic lifetinme) objects declared in UPC
source files, nanely any shared fil e-scope (global) objects or static |ocal
vari abl es (bl ock-scope SSD).

All SSDis allocated and initialized dynanmically at runtime, instead of being
truly statically allocated (since on nost platforms network-addressabl e nenory
can not be assigned at conpile time, and nust be dynamically allocated). The
basic idea is the conpiler replaces each SSD declaration with a

upcr _shared_ptr or upcr_pshared_ptr that will point to the relevant data item
at runtine (all SSD access operations nust be nodified appropriately to
traverse the extra level of indirection). The conpiler also adds an

al l ocation and an initialization function for each UPC file it conpiles, in
which all SSD declared in the file is allocated and inititalized (sone
thread-local data initializations may al so be perforned there).

The functions |isted bel ow should only be used in these per-file startup
allocation/initialization routines. For nore information on the nam ng
conventions for these functions, the content that should go in them and the
framework that calls them refer to the "Handling Static Data in the UPC
Runti me" docunent (available in the docunentation section of the Berkeley UPC
website at http://upc.|bl.gov).

*/

These val ues are guaranteed to be defined by every shared pointer
representation. UPCR_IN TIALIZED {P}SHARED shoul d be used by the conpiler
to initialize all upcr_shared_ptr_t and upcr_pshared_ptr_t’'s that represent
shared variables the user defines with an initial value (if the user does
not provide a value, do not provide any value for the upcr_{p}shared_ptr,
either). UPCR_NULL_{P}SHARED should be used to initialize

upcr _{p}shared_ptr’'s that represent wunshared pointers to shared data that
the user explicitly initialized to NULL.

E N R I

* Note these values are only guaranteed to work as variable initializer expressions,
* and may not safely be used as the rhs for a general assignment statenent

* (upcr_setnull _(p)shared nust be used for such applications)

*/

#defi ne UPCR_I NI Tl ALI ZED_SHARED { ???
#def i ne UPCR_NULL_SHARED { ?7??
#defi ne UPCR_I NI TI ALl ZED_PSHARED { ???
#def i ne UPCR_NULL_PSHARED { ?7??

e e

/* Shared pointer variables that contain NULL val ues.

Note that these can resolve to either a basic type or a struct (depending
on the shared pointer representation), so code that uses themnust work in
either case (eg. it would be illegal to use themin a context requiring a
scal ar val ue, such as passing it to == operator.)

/

const upcr_shared_ptr_t upcr_null _shared;

const upcr_pshared_ptr_t upcr_null _pshared;

* % k% % o

/
This function will be provided by each shared pointer representation,
and returns nonzero if the passed pointer is initialized to
UPCR_I NI TI ALI ZED_{ P} SHARED.

/

nt upcr_is_init_shared(upcr_shared_ptr_t p);

nt upcr_is_init_pshared(upcr_pshared_ptr_t p);

* % k%

mul t _by_t hreads Pass nonzero if nunbl ocks should be nultiplied by THREADS

/*

* Allocation information struct for shared arrays that will be striped across
* the UPC threads (with blocking size != 1 elenent):

*

* gsptr_addr The address of the proxy upcr_shared_ptr_t for the menory
* bl ockbytes Si ze of each block in bytes

* nunbl ocks Nurmber of bl ocks to allocate

*

*

/
typedef struct {
upcr _shared_ptr_t *sptr_addr;
size_t bl ockbytes;
si ze_t nunbl ocks;
int mul t _by_t hreads;
} upcr_startup_shalloc_t;

/
All ocation information struct for indefinitely bl ocked (or blocksize ==1
el ement) shared arrays.

psptr_addr The address of the proxy upcr_pshared_ptr_t for the nenory

bl ockbytes Size of each block in bytes

nunbl ocks Nunber of blocks to allocate

mul t _by_threads Pass nonzero if nunbl ocks should be multiplied by THREADS

E N R I

/
typedef struct {
upcr _pshared_ptr_t *psptr_addr;
size_t bl ockbytes;
si ze_t nunbl ocks;
int mul t _by_t hreads;
} upcr_startup_pshal loc_t;

/
Al'l ocates the specified amount of nenory for each shared pointer in the
array of info structs.

Only perfornms a given allocation if the menory has not already been allocated
for the pointer. |If the pointer was not initialized (i.e., is equal to O
instead of UPCR_I NI Tl ALI ZED SHARED), any menory allocated is al so nenset

to O.

This function nmust be called by all threads collectively (like

upc_all _alloc, etc.). The function does not guarantee that all threads
wi Il have received the data when any particul ar thread

returns fromthe call (i.e. it does not guarantee a barrier is perforned
after initialization). The function does guarantee that it may be called
repeatedly without the need for client barrier calls to be placed in

bet ween the calls.

See the upcr_startup_shalloc_t struct definition for options affecting how
menory is all ocated.

L T R A N T R R NI

/
voi d upcr_startup_shal | oc(upcr_startup_shalloc_t *infos, size_t count);

Al l ocates the specified amount of nmenory for each phasel ess shared pointer
in the array of info structs

Only performs a given allocation if the menory has not al ready been all ocated
for the pointer. |If the pointer was not initialized (i.e., is equal to O
instead of UPCR_I NI Tl ALI ZED PSHARED), any nmenory allocated is al so nmenset

to O

This function nmust be called by all threads collectively (like

upc_all _alloc, etc.). Wen the function returns, the shared pointers
pointed to by "infos’ will be initialized to the correct shared nenory
| ocation on all UPC threads

See the upcr_startup_shalloc_t struct definition for options affecting how
menory is allocated

/

voi d upcr_startup_pshal | oc(upcr_startup_pshalloc_t *infos, size_t count);

* %k ok sk ok ok ok ok Ok Ok Ok % kX % %

/*
* Information for a single dinmension of a shared array initialization
*
* | ocal _el ens /1 Nunber of elenents in local init array’s dinension
* shared_el ens /'l Number of elements in shared array’s di mension
* mul t _by_t hreads /1 Nonzero if shared array’s dinension should be
* mul ti pl ed by THREADS
*
* Note that the UPC | anguage specification mandates that for a dynanic
* translation environment (i.e. one in which THREADS is not a conpile-time
* constant) only one dinension of a shared array can contain THREADS, and it
* can only be used once in that dinmension, to nmultiply a constant size
*

/

typedef struct upcr_startup_arrayinit_dimnfo {
size_t |ocal _el ens;
size_t shared_el emns;
int mul t _by_threads

} upcr_startup_arrayinit_dinminfo_t;

/
Initializes a shared array froma local array, or to Os if NULL is passed
for the local array.

This function is used to copy initial values froma |local array (generated
by the UPC conpiler) that contains any initial values provided by the user
The | ocal array does not need to have the same size as the shared array
(indeed, if the shared array contains THREADS in one of its dinensions, its
size is not even knowable at compile tinme). |t does, however, need to have
the sane nunber of dinensions as the shared array, and the same el enent
size. Al values in the shared array that do not have correspondi ng val ues
in the local array are nmenset to 0O

The function takes the addresses of the shared and local arrays, a pointer
to an array of structures (each of which describes a single dinmension of
the array), a count of the nunber of dinensions in the array, the size (in
bytes) of the array’s el enent type, and the bl ocking factor of the array
(as a nunber of elenents).

If NULL is passed for the local array address, all local array paraneters
will be ignored, and the function will sinply set all elenments of the
shared array to O

Here is an exanple

/1 in UPC program

shared [5] int j[3][4][2*THREADS] = {
{

Lt Yt Xaan ¥aan
B oW
NoO AN

, é, 4, 51} /'l the user may specify extra elens if THREADS
/1 is part of the dinension

b

Here the user has only provided a small subset of the inital values in the
array (even disregarding the THREADS in the final dimension). The UPC
conpil er should place the initial values into a [1][4][5] array, and then
setup and call the initialization function

R T T T T R I R R

/1 output .c file, at file scope
upcr _shared_ptr_t j = UPCR_I NI TI ALI ZED_ SHARED,

int j_initarray[1][4][5] = {
{

{1 2},
{3 41},
{5 61},
{1, 2 3, 4 5}

b

upcr_startup_arrayinit_dinmnfo_t j_dimnfos[] = {

0}
. 0},
1}

T lamtand|
(Sl
N W

}s
/1 Ininitialization function
upcr_startup_initarray(&, j_initarray, j_dimnfos, 3, sizeof(int), 5);

This function nmust be called collectively by each UPC thread for each array,
in the same order and with the same arguments.

The function does not guarantee that all threads will have conpleted their
initializations when any particular thread returns fromthe call (i.e. it
does not guarantee a barrier is perfornmed after initialization).

| npl enent ati on notes:

For efficiency, each thread should only copy elements that belong to its
portion of the shared array, so the function should not cause any network
traffic.

To save space, the local array’s dinensions should only be as |arge

as needed to contain all the initial values specified by the user.

/

voi d upcr_startup_initarray(upcr_shared_ptr_t dst, void * src,
upcr_startup_arrayinit_dimnfo_t *dim nfos,

size_t dincnt, size_t elenbytes, size_t blockel ens);

¥k ok sk ok ok ok ok ok ok Ok R R R ok 3k 3k ok ok ok ok ok ok ok k% Rk ok kb ok ok ok Ok ok Ok Ok F

/*

* Initializes a phaseless array froma local array, or to Os if NULL passed.
*

* This function is identical to upcr_startup_initarray, except that it takes a
* phasel ess shared ptr.

*

* For phasel ess shared arrays with indefinite blocksize, pass 'O for the

* ' bl ockel ems’ paraneter.

*

* Inplementor’s note: It should be possible to sinply wite this as an

* inline function that calls upcr_startup_initarray(),
* wi th upcr_pshared_to_shared() used to convert dst to
* the correct type.

*/

voi d upcr_startup_initparray(upcr_pshared_ptr_t dst, void * src,
upcr_startup_arrayinit_dimnfo_t *dim nfos,
size_t dincnt, size_t elenbytes, size_t blockel ens);

A string representing all the relevant upcr configuration settings
that can be conpared using string conpare to verify version conpatibility.
The string is al so enbedded into the library itself such that it can be
* scanned for within a binary executable.
*
/
#def i ne UPCR_CONFI G_STRI NG " ??7?"

* % % ok

